[READNOTE]

Hotness prediction of scientific topics based on a bibliographic knowledge graph

💡 MetaData

Title Hotness prediction of scientific topics based on a bibliographic knowledge graph
Journal Information Processing & Management
Authors Chaoguang Huo; Shutian Ma; Xiaozhong Liu
Pub. date 2022-07-01
DOI 10.1016/j.ipm.2022.102980
JINFO JCR分区: Q1 中科院分区升级版: 计算机科学1区 影响因子: 7.47 5年影响因子: 7.036 EI: 是 SSCI: Q1 AJG: 2 CCF: B FMS: B JCI: 2.16
**Abstract **As a part of innovation in forecasting, scientific topic hotness prediction plays an essential role in dynamic scientific topic assessment and domain knowledge transformation modeling. To improve the topic hotness prediction performance, we propose an innovative model to estimate the co-evolution of scientific topic and bibliographic entities, which leverages a novel dynamic Bibliographic Knowledge Graph (BKG). Then, one can predict the topic hotness by using various kinds of topological entity information, i.e., TopicRank, PaperRank, AuthorRank, and VenueRank, along with pre-trained node embedding, i.e., node2vec embedding, and different pooling techniques. To validate the proposed method, we constructed a new BKG by using 4.5 million PubMed Central publications plus MeSH (Medical Subject Heading) thesaurus and witnessed the essential prediction improvement with extensive experiment outcomes over 10 years observations.

📜 研究概况

问题:

预测学术研究主题的热门程度

现状:

路径:

融合MeSH中各主题的关系、融合论文的引用关系、运用元路径网络表示学习等预测主题热度

贡献:


📊 研究细节


🚩 主要结论


📌 创新启示


🔬 展望思考


📜 原文摘录